INTRODUCTION

We know that in Nature there are three kinds of neutrinos and in particular atmospheric neutrinos show a deficit of v_{μ}

This effect, found first by the SuperKamiokande and confirmed by many other experiments (for example by MACRO and K2K), has been deeply studied.

So, the disappearance of muon neutrinos seems doubtless stated .

Moreover, the experimental data agree very well with the hypothesis of $v_{\mu} \rightarrow v_{\tau}$ oscillations. However, the experiments performed until now do not allow to observe the particle that should be produced in the oscillation:

the V_{τ}

In order to be sure that the oscillation $v_{\mu} \rightarrow v_{\tau}$ is the right explanation of the data, we need the **direct observation of the** v_{τ}

The OPERA experiment

MTM Bologna, 17/6/ 2005

Physics motivations

Provide unambiguous evidence for $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations in the parameter region indicated by atmospheric neutrino data by searching for ν_{τ} appearance in the CNGS ν_{μ} beam

The CNGS Beam

Beam to LNGS in May 2006

_< Ε ν _μ >	17 GeV		
v_{τ} prompt	negligible		

Expected v_{τ} CC interactions/year: ~25 ($\Delta m^2 = 2.4 \times 10^{-3} \text{ eV}^2$, maximal mixing)

MTM Bologna, 17/6/ 2005

The Oscillation Project with Emulsion tRacking Apparatus

In order to detect the decays of the τ particles produced in CC interactions of ν_{τ} 's from ν_{μ} oscillations

a high-resolution tracking detector is required

Nuclear emulsions

- 3D particle reconstruction
- Sub-micron spatial resolution
- High granularity (~300*hits*/mm)

Modular detector

basic unit (BRICK): sequence of lead/emulsions

Automatic microscopes for emulsion scanning It it the second hhhhhaddadad a baaadaadd OPER **European Scanning** System running in : Bari, Bern, Bologna, Lyon, Napoli, Neuchâtel, Roma, Salerno S-UTS (Nagoya) **High speed** CCD Camera (3 kHz) **Piezo-controlled** objective lens Synchronization of objective lens and stage **Constant speed stage** Scanning speed ~ 20 cm²/h/side Single side track finding efficiency ~ 95%

Sheet-to-sheet alignment (8 GeV/c) ~ 0.5 μm Angular resolution ~ 2 mrad

Conclusions

- A complex modular detector, using visual and electronic detection techniques, has been designed
- The detector construction and installation at LNGS are well underway
- Impressive progress in emulsion scanning automation has been achieved after challenging R&D

The OPERA experiment will start running in May 2006 to unambiguously confirm $v_{\mu} \rightarrow v_{\tau}$ oscillations

$\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation search

τ decav		Signal		Deelverreund
channels	$\Delta m^2 = 1.9 \times 10^{-3} eV^2$	$\Delta m^2 = 2.4 \times 10^{-3} eV^2$	$\Delta m^2 = 3.0 \times 10^{-3} eV^2$	Васкдгоипо
ALL	8.0	12.8	19.9	1.0

Main background sources: charm production and decays hadron re-interactions in lead large-angle muon scattering in lead

hep-ph/0210043

The OPERA Collaboration

Belgium

IIHE (ULB-VUB) Brussels

Bulgaria

Sofia

China

IHEP Beijing, Shandong

Croatia

IRB Zagreb

France

LAPP Annecy, IPNL Lyon, LAL Orsay, IRES Strasbourg

Germany

Berlin Humboldt, Hagen, Hamburg, Münster, Rostock

Technion Haifa

Italv

Bari, Bologna, LNF Frascati, L'Aquila, LNGS, Naples, Padova,

Rome La Sapienza, Salerno

Japan

Aichi, Kobe, Nagoya, Toho, Utsunomiya

Russia

INR Moscow, ITEP Moscow, JINR Dubna, Obninsk

Switzerland

Bern, Neuchâtel Turkey METU Ankara

	Signal			Background
	$\Delta m^2 = 1.9 \times 10^{-3} eV^2$	$\Delta m^2 = 2.4 \times 10^{-3} eV^2$	$\Delta m^2 = 3.0 \times 10^{-3} eV^2$	
Old analysis	6.6 (10.0)	10.5 (15.8)	16.4 (24.6)	0.7 (1.1)
New analysis	8.0 (12.1)	12.8 (19.2)	19.9 (29.9)	1.0 (1.5)

full mixing, 5 years run @ 4.5x10¹⁹ pot / year

(...) CNGS beam intensity increase (x 1.5)

Comments on background - possible improvements:

- π/μ separation at low energy by dE/dx in emulsion (charm background reduction)
- extensive comparison of FLUKA with GEANT4/CHORUS data (reduction of the uncertainty on hadron re-interaction calculations, based on FLUKA, 50% systematic error assumed)
- experimental measurement of large-angle muon scattering

Lead – Emulsion Target

Detection of τ decays

New channel recently taken into account in the analysis: $\tau \rightarrow 3h$

charm production and decays Main background sources: hadron re-interactions in lead large-angle muon scattering in lead

WIN05, Delphi, June 6-11, 2005

τ detection efficiency

	DIS long	QE long	DIS short	Overall *
$\tau \rightarrow e$	2.7	2.3	1.3	3.4
$\tau \! \rightarrow \! \mu$	2.4	2.5	0.7	2.8
$ au \! ightarrow h$	2.8	3.5	-	2.9
Total	8.0	8.3	1.3	9.1 %

* weighted sum on DIS and QE events

Recent improvements:

 $\tau \rightarrow$ 3h now included in the analysis + updated brick finding algorithm

Step-by-step efficiencies, $\tau \to \mu$

<u>BR</u>	Long dec.	Locatio	on <u>F</u>	Kink+ kinemation		<u>Id μ + ECC connection</u>	<u>Others</u>
0.174	0.39	0.73	}	0.73		0.80	0.96
Application of the 3D chart			Additi extrac	onal fraction of ted bricks			
Extraction strategy:		τ→μ	τ→е	τ→h	7		
Only the (HPB)	Highest Prob.	Brick	73.5%	75.4%	64.2%		
HPB + se brick (S/	cond most prob MPB) if P1-P2<	oable 0.1	+1.0%	+3.0%	+4.7%		
HPB + S	MPB if P1-P2<(0.2	+2.0%	+5.0%	+6.9%	→ 0.4%	
HPB + S	MPB if P1-P2<	0.3	+2.8%	+5.8%	+8.2%	→ 0.5%	
HPB + S	MPB (P2> 1%)		+8.1%	+9.7%	+12.0%	→ 1.2%	
Sequenti bricks in	al extraction of the list (with l	f all the P>1%)	+9.6%	+12.0%	+16.1%	→ 1.9%	
	Net efficienc	<u>sy gain</u> →	+7.7%	+ 10.1	+14.2%	 Minimal reduction of the target mass 	

WIN05, Delphi, June 6-11, 2005

WIN05, Delphi, June 6-11, 2005

Particle separation by dE/dx

Grain density in emulsion is proportional to dE/dx By measuring grain density as a function of the distance from the stopping point, particle identification can be performed.

Test exposure (KEK) : 1.2 GeV/c pions and protons, 29 plates

Calibration

AHEP 2003, Oct. 14-18, Valencia - Spain